Work Address

Home Address

National Institute of Standards and Technology Building 820, NIST North Room 383 Gaithersburg, MD 20899-0001 USA (301) 975-4793 Dr. Stephen Bullock 744 Clopper Road, #31 Gaithersburg, MD 20878 (240) 631-2584

web-page: http://math.nist.gov/~SBullock

RESEARCH INTERESTS

- quantum circuits models for quantum computing; quantum logic synthesis
 - applications of Lie theory
 - numerical analysis and simulation (< 14 qubits)
 - synthesis exploiting quantum measurement as a gate
- multi-partite entanglement theory and implications for circuit design

EXPERIENCE

Title/Program	Employer	Years
National Research Council	National Institute of	Summer2003-present
(NRC) Postdoc, mathematics	Standards and Technology	
Term Assistant Professor, mathematics	University of Michigan	Fall2000-Summer2003
Teaching-Research Assistant	Cornell University	Fall98-Spring00
Teaching Assistant	Notre Dame University	1996-97 academic year
Teaching Assistant	Cornell University	Fall94-Spring96

EDUCATION

Degree	University	Awarded	comment
Ph.D.	Cornell University	May, 2000	mathematics, under Birgit Speh
M.A.	Cornell University	August, 1996	differential geometry
B.S.	University of Georgia	June 1994	summa cum laude, Φβκ

MATHEMATICAL SPECIALTIES

Lie Groups, Lie Theory

- Structure theory of real groups, Satake & Vogan diagrams, representation theory
- Locally symmetric Riemannian manifolds

Riemannian geometry and smooth topology

- de Rham cohomology, sheaf cohomology, Lie algebra cohomology, Hodge theory
- nonpositive curvature, esp. locally symmetric Riemannian manifolds

PUBLISHED ARTICLES

- [12] S.S. Bullock, D.P. O'Leary, and G.K. Brennen, Asymptotically Optimal Quantum Circuits for *d*-level Systems, *Physical Review Letters* **94** 230502 (2005).
- [11] S.S. Bullock, G.K. Brennen, D.P. O'Leary, Time Reversal and *n*-qubit Canonical Decompositions. *Journal of Mathematical Physics* **46** 062104 (2005).
- [10] G.K. Brennen, D.P. O'Leary, and S.S. Bullock, Criteria for Exact Qudit Universality. *Physical Review A* **71** 052318 (2005).
- [9] G.K. Brennen, S.S. Bullock, Stability of Global Entanglement in Thermal States of Spin Chains. *Physical Review A* **70** 052303 (2004).
- [8] S.S. Bullock, Note on the Khaneja Glaser Decomposition. *Quantum Information and Computation* **4(5)** 396 (2004).
- [7] V.V. Shende, S.S. Bullock, I.L. Markov, Recognizing Small-Circuit Structure in Two-Qubit Operators. *Physical Review A* **70** 012310 (2004).
- [6] V.V. Shende, I.L. Markov, S.S. Bullock, On Universal Gate Libraries and Generic Minimal Two-qubit Quantum Circuits. *Physical Review A* **69** 062321 (2004).
- [5] S.S. Bullock, G.K. Brennen, Canonical Decompositions of n-qubit Quantum Computations and Concurrence. *Journal of Mathematical Physics* **45(6)** 2447 (2004).
- [4] S.S. Bullock, I.L. Markov, Smaller Circuits for Arbitrary n-qubit Diagonal Computations. *Quantum Information and Computation*, **4(1)** 027 (2004).
- [3] S.S. Bullock, I.L. Markov, An Arbitrary Two-qubit Computation in 23 Elementary Gates. *Physical Review A* **68** 012318 (2003).
- [2] S.S. Bullock, Unreduced Gaussian weighted L_2 cohomology of locally symmetric spaces. New York Journal of Mathematics **8** 241 (2002).
- [1] S.S. Bullock, Weighted L_2 cohomology of asymptotically hyperbolic manifolds. *New York Journal of Mathematics*, **7** 7 (2001).

DRAFTS

- [a] Vivek V. Shende, Stephen S. Bullock, Igor L. Markov, Synthesis of quantum logic circuits, http://www.arxiv.org/abs/quant-ph/0406176, to appear in *IEEE Transactions on Computer Aided Design*
- [b] Dianne P. O'Leary, Stephen S. Bullock, QR factorizations using a restricted set of rotations, http://math.nist.gov/~SBullock, submitted to *Electronic Transactions on Numerical Analysis*

SERVICE

- [I] Organized NIST MCSD *Quantum Information Theory and Practice Seminar* (QITaP) from September 2004 to June 2005.
- [II] Reviewer for APS *Physical Review A, Physical Review Letters*, and (infrequently) IEEE *Transactions on CAD*

INVITED TALKS & COMPUTER SCIENCE CONFERENCE PAPERS

Title	Coauthors	Venue	Date
Quantum Circuit Design		NRC Board of Assessment	January 13, 2005
		of NIST Programs	
Matrix decompositions	Vivek Shende (a)	2 nd Feynman Festival	August 21, 2004
& quantum circuit design	Igor Markov (a)		
Time-reversal symmetry	Gavin Brennen (p)	UMdCP Quantum Info.	May 4, 2004
and entangled eigenstates	Dianne O'Leary (a)	& Coherence Seminar	
Time-reversal symmetry	Gavin Brennen	NIST QuIBEC	April 21, 2004
and concurrence dynamics	Dianne O'Leary	seminar, radiation physics	
"Entanglement Capacity	Gavin Brennen	SPIE symposium, QC&Iii	April 13, 2004
of <i>n</i> -qubit Quantum Computations"		www.spie.org	
"Finding Small	Igor Markov	SPIE symposium, QC&Iii	April 14, 2004
Two-qubit Circuits"	Vivek Shende	www.spie.org	
Time-reversal and the	Gavin Brennen	NIST QuITaP seminar	March 25, 2004
CCD matrix decomposition	Dianne O'Leary	Math.Comp.Sci.Div.	
KAK decompositions &	-	Cornell Lie	March 5, 2004
entanglement dynamics		Theory seminar	
Gaussian weighted L_2 cohomology	-	Loc.Sym.Space Conf.	Oct. 3, 2003
		M.F.Oberwolfach	
Symmetry Groups of the n-tangle	Gavin Brennen	Institute for	Sept. 8, 2003
and Maximal Concurrence		Defense Analyses, CSS	
"An Arbitrary Two-Qubit Quantum	Igor Markov	Design Automation	July 2003
Computation in 23 gates"		Conf. (www.dac.com)	B.P.A. nominee
Weighted L_2 cohomology	-	AMS midwest section	March 2002
		meeting, d.g. session	

COMPUTER SKILLS

Proficient with [i] $\text{LAT}_{EX} 2_{\epsilon}$, [ii] C++, [iii] MatLab, [iv] Linux

REFERENCES

Isabel Beichl (superviser)	isabel.beichl@nist.gov
Birgit Speh (thesis adviser, pure mathematician)	speh@math.cornell.edu
Dianne O'Leary (applied mathematician)	oleary@cs.umd.edu
Igor Markov (computer scientist)	imarkov@eecs.umich.edu
Bei Lok Hu (physicist)	hub@physics.umd.edu

MISCELLANY

Hobbies: jogging, investing, vegetable gardening.

Languages: English, German

Citizenship: USA